If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2a^2+3a-44=0
a = 2; b = 3; c = -44;
Δ = b2-4ac
Δ = 32-4·2·(-44)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-19}{2*2}=\frac{-22}{4} =-5+1/2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+19}{2*2}=\frac{16}{4} =4 $
| y+1.6=5.48 | | -60x+32=32+60 | | 0=−5x2+10x+15 | | 7x+75=28 | | 3x-2(2)=5x | | 8y=73 | | a+3a+3a=a+12 | | 6(x-3)+7=6x-11 | | 3q+7=6q-7(2-6q) | | 7/2x+1x/2=3x+3/2+5x/2 | | 29/6•2/5=x | | (2m+1)=(m-2)3 | | -8/5+1/2x=-8/7 | | 12x^2-12x-360=0 | | -5(3x-35)=2(x-7)-15 | | 3w=10w-3 | | 0.5(x-4)=5+4x | | 8/5y-9=-1 | | 3/11-x/2=2x/11+1/4 | | 15x=35=95 | | 73+w=136 | | 11+3x=4(-x+7)-73 | | 2(x-7)^=32 | | 3y+2=6y-7 | | x=35+15=95 | | 5a-(2a+8)=18 | | 2x+4+62+90=180 | | 0=-16*x^2+70*x | | 4^x-1-2^x+2=128 | | 18x-6=10x-46 | | 4x+24=2x+12 | | 5x=5^2x+1 |